සයිනය

testwiki වෙතින්
Jump to navigation Jump to search

සැකිල්ල:Other uses සැකිල්ල:තොරතුරුකොටුව ගණිත ශ්‍රිතය සැකිල්ල:ත්‍රිකෝණමිතිය

සිඟිති-රූපයක් තැනීමෙහිදී ඇතිවූ දෝෂය:
sinα=oppositehypotenuse
α කෝණය සඳහා, මෙහි සම්මුඛ පාදයේ දිග කර්ණයේ දිගින් බෙදීමේ දී ලැබෙන අනුපාතය සයින් ශ්‍රිතය විසින් ලබා දෙයි.
ගොනුව:Sine.svg
The sine function graphed on the Cartesian plane. In this graph, the angle x is given in radians (π = 180°).
ගොනුව:Sine cosine one period.svg
The sine and cosine functions are related in multiple ways. The derivative of sin(x) is cos(x). Also they are out of phase by 90°: sin(π/2x) = cos(x). And for a given angle, cos and sin give the respective x, y coordinates on a unit circle.

සයිනය යනු ගණිතයේ දී භාවිතා වන, කෝණයක ත්‍රිකෝණමිතික ශ්‍රිතයකි. කෝණයක සයින අගය ඍජුකෝණික ත්‍රිකෝණයක සන්දර්භය සමඟ නිර්වචනය කළ හැකි අතර එනම් එය: නිරූපිත කෝණය සඳහා සම්මුඛ ව පිහිටා ඇති පාදයේ දිග ත්‍රිකෝණයේ දිගම පාදයේ (හෙවත් කර්ණයේ) දිගින් බෙදීමේ දී ලැබෙන අනුපාතය ලෙස යි.

ඍජුකෝණික ත්‍රිකෝණ අර්ථ දැක්වීම

ඕනෑම සමරූපී ත්‍රිකෝණ කිහිපයක් ගත්විට පාද වල දිගෙහි අනුපාතයන් සමාන වෙයි. උදාහරණ ලෙස, කර්ණය දෙගුණයක් දිගු වී නම්, අනෙක් පාදයන්ට ද එයම සිදු වේ. එබැවින් කෝණයේ විශාලත්වය මත පමණක් රඳා පවතින්නා වූ මෙම ත්‍රිකෝණමිතික ශ්‍රිතවල අනුපාතයන් අනුපිළිවෙලින් මෙසේ දැක්වේ: (රූපය බලන්න) සයින් ශ්‍රිතයේ දී පහත ගැටලුවේ කර්ණය හා A කෝණයට "සම්මුඛ" පාදය අතර අනුපාතය; කර්ණය හා "බද්ධ" පාදය අතර අනුපාතය (කෝසයිනය); "සම්මුඛ" හා "බද්ධ" පාද අතර අනුපාතය (ටැංජනය).

A සුළු කෝණය සඳහා ත්‍රිකෝණමිතික ශ්‍රිත අර්ථ දැක්වීම, A කෝණය අඩංගු ඕනෑම ඍජුකෝණික ත්‍රිකෝණයක් සමඟ ආරම්භ කරන්න. ත්‍රිකෝණයේ පාද තුන පහත ආකාරයට නම් කර ඇත (රූපය බලන්න):

  • මෙහි බද්ධ පාදය යනු අදාළ කෝණයට (A කෝණයට) හා ඍජු කෝණයට සම්බන්ධ වී ඇති (බද්ධ වී ඇති) පාදය යි, එනම් මෙහි ලබා දී ඇති b පාදය යි.
  • මෙහි කර්ණය යනු ඍජු කෝණයට සම්මුඛ ව පිහිටා ඇති පාදය යි, එනම් මෙහි ලබා දී ඇති h පාදය යි. කර්ණය සෑමවිටම ඍජුකෝණික ත්‍රිකෝණයක දිගම පාදය වේ.
  • මෙහි සම්මුඛ පාදය යනු අදාළ කෝණයට (A කෝණයට) සම්මුඛ ව පිහිටා ඇති පාදය යි, එනම් මෙහි ලබා දී ඇති a පාදය යි.
"https://si.wiki.beta.math.wmflabs.org/w/index.php?title=සයිනය&oldid=191" වෙතින් සම්ප්‍රවේශනය කෙරිණි